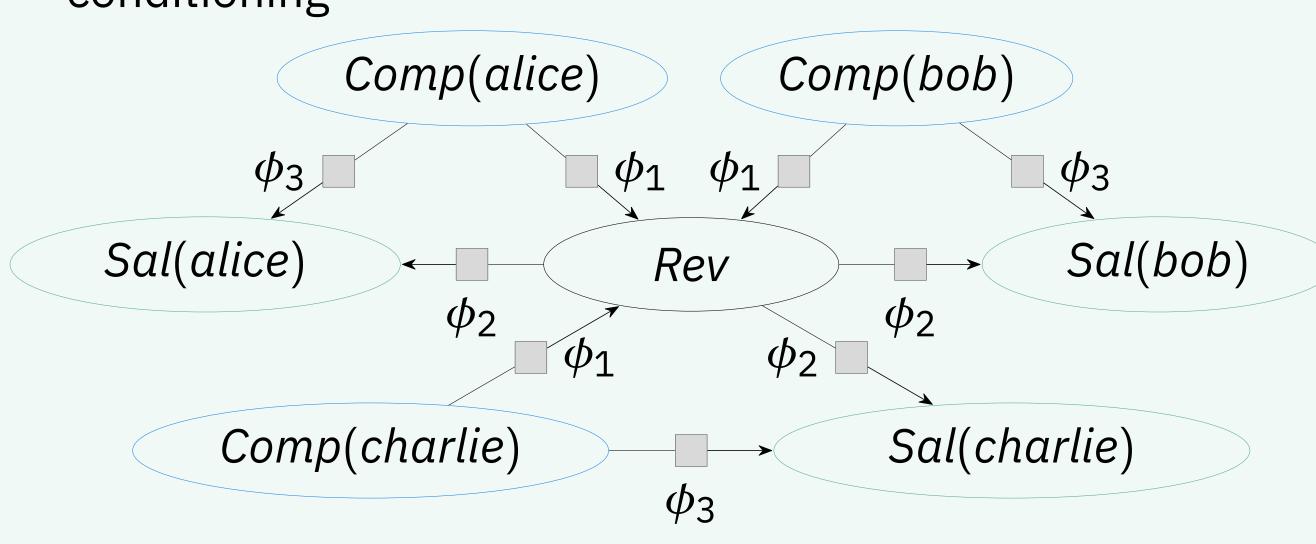


Estimating Causal Effects in Partially Directed Parametric Causal Factor Graphs

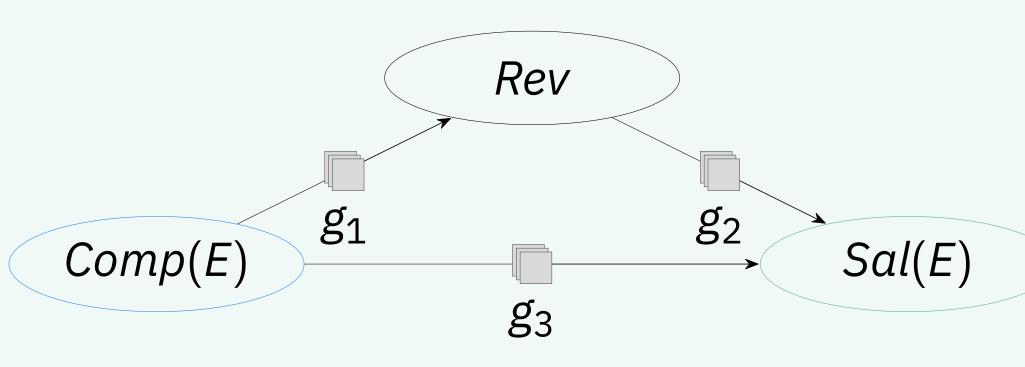
Malte Luttermann, Tanya Braun, Ralf Möller, and Marcel Gehrke

1. Motivation

- ► Goal: Make decisions under uncertainty
- Need to compute the effect of actions
- Need to apply the semantics of an intervention instead of conditioning

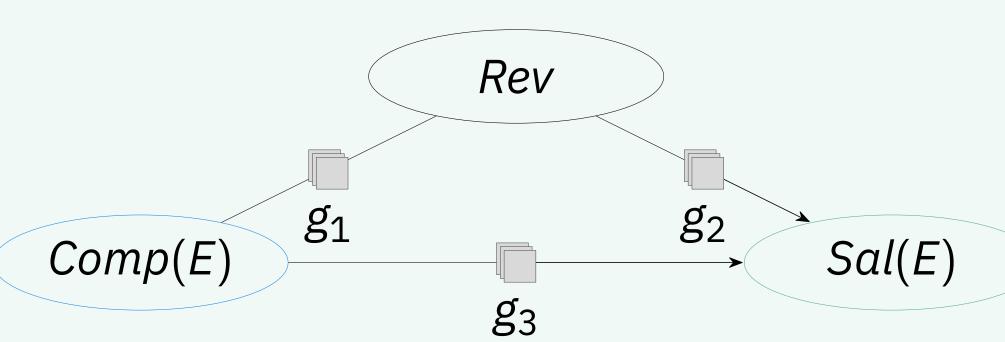


- ► We would like to have a first-order (lifted) representation
- Lifting uses a representative of indistinguishable individuals for computations and thereby speeds up inference



2. Problem Setup

- ► In general, we do not know all causal relationships
- ► Goal: Incorporate partial causal knowledge in a lifted representation
- Estimate causal effects in a partially directed lifted representation

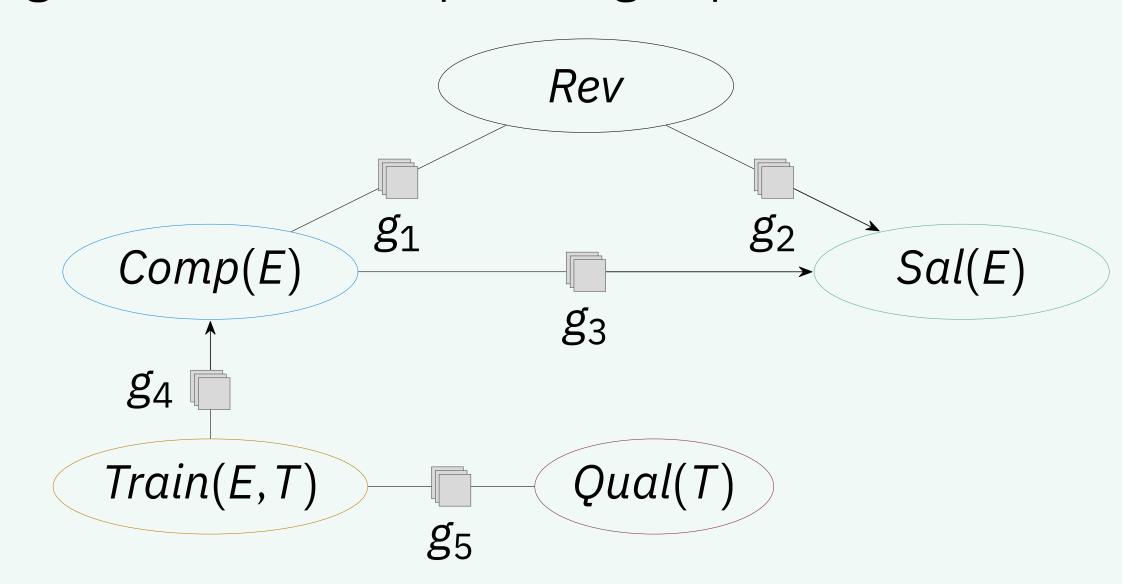


Main Contribution

A formalism to enable first-order decision making with partial causal knowledge.

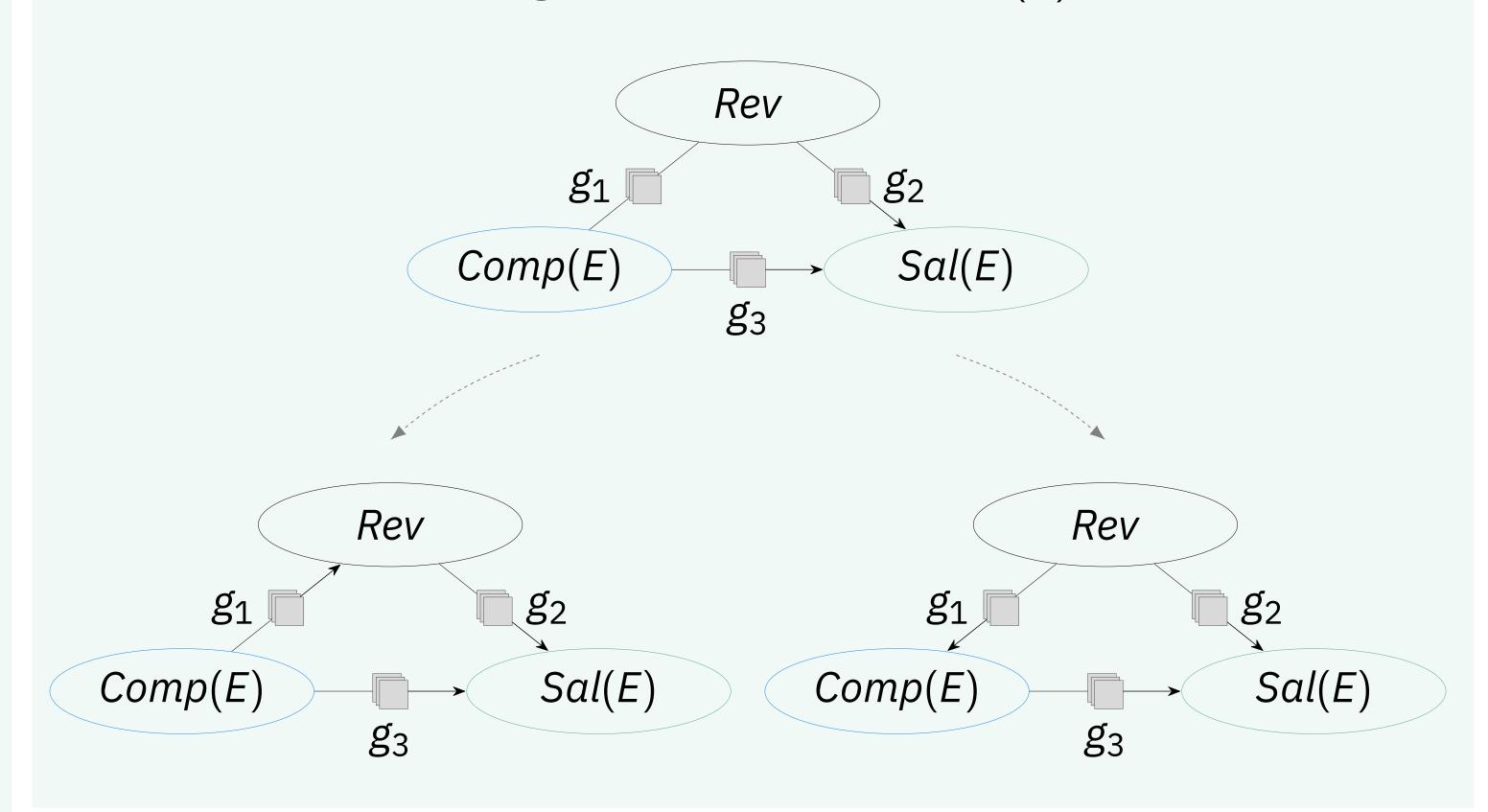
3. Partially Directed Parametric Causal Factor Graphs

- ► Directed edges to represent known causal relationships
- Undirected edges for relationships with unknown causal directions
- Logical variables to represent groups of random variables



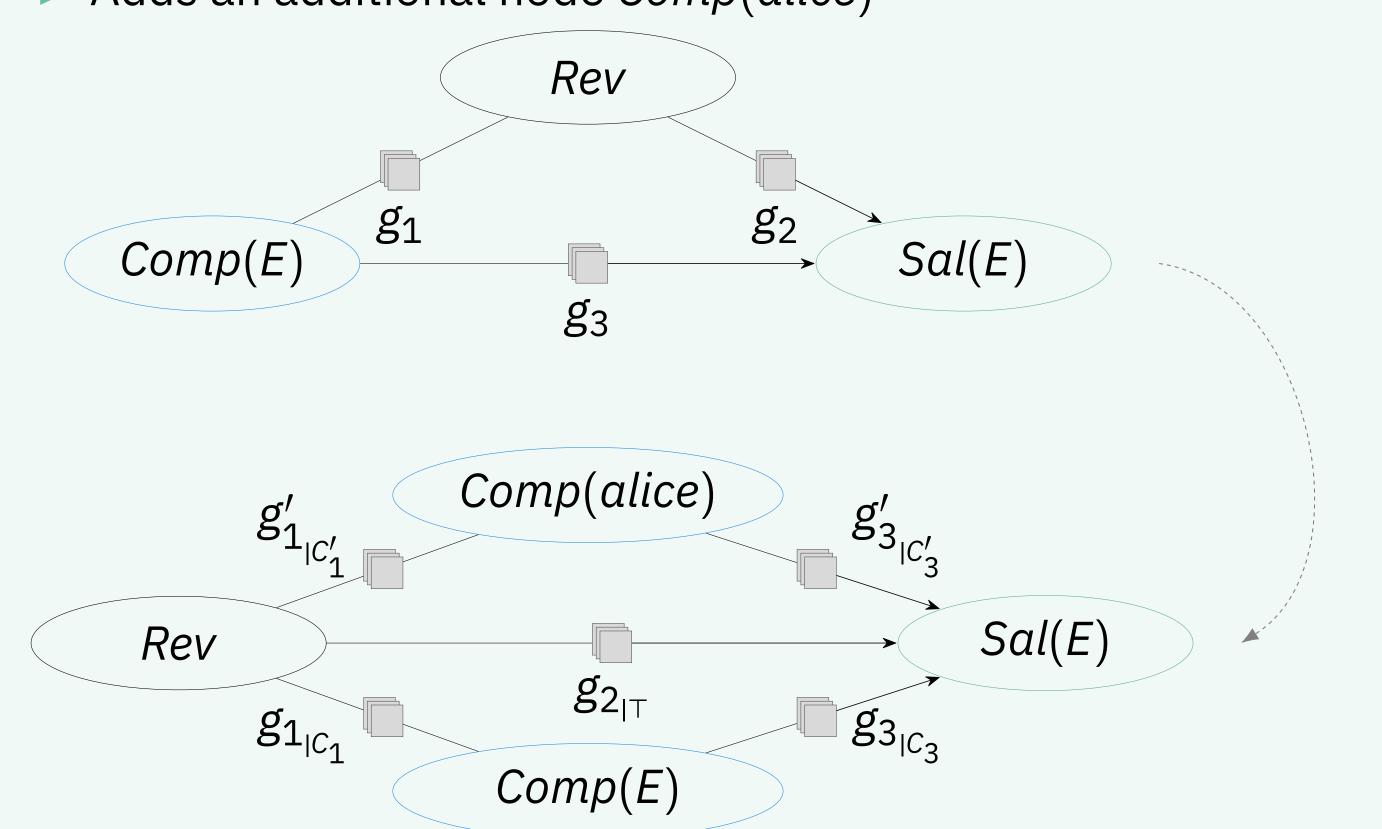
4. Interventions

- We want to compute the effect of actions
 - ► Is it worth the costs to send an employee to a training course?
 - ► What effect has sending all employees to a training course on the revenue?
- An intervention is defined on a fully directed graph
- ightharpoonup E.g., $P(Rev \mid do(Comp(E) = high))$
 - ► Sets fixed value Comp(E) = high
 - ightharpoonup Removes incoming influences from Comp(E)



5. Splitting

- ► An intervention on a propositional random variable requires splitting of nodes
- ightharpoonup E.g., $P(Rev \mid do(Comp(alice) = high))$
 - ightharpoonup Removes *alice* from Comp(E)
 - ► Adds an additional node Comp(alice)



6. The Extended Lifted Causal Inference Algorithm

Main idea:

- (1) Split nodes of interventional variables (avoid full grounding as much as possible)
- (2) Enumerate relevant edge directions to compute the effect of an action

Properties:

- Only grounds necessary parts of the model
- ► Theorem: To compute the effect of an intervention, it is sufficient to consider the directions of the undirected edges that are connected to the random variables on which we intervene